

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND

DELIVERY PROBLEM WITH TIME WINDOWS

THESIS

Benjamin Clapp

AFIT-ENS-13-M-03

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENS-13-M-03

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY

PROBLEM WITH TIME WINDOWS

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Benjamin A. Clapp, BS

March 2013

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENS-13-M-03

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY

PROBLEM WITH TIME WINDOWS

Benjamin Clapp

Approved:

___________________________ _________

Jeffery Weir, PhD (Advisor) Date

___________________________ _________

Raymond Hill, PhD (Reader) Date

iv

AFIT-ENS-13-M-03

Abstract

This thesis develops an algorithm to address a special case of the Vehicle Routing

Problem. The algorithm developed is decompositional with two components. The first

component is based upon Dijkstra’s algorithm and is used to simplify the routing

component of processing. The second component is based upon the priority rule

heuristics used in scheduling job shop problems for parallel machines.

The VRP solved is subject to time windows and capacity constraints on vehicles

and offloading. The VRP is multimodal. The objective function for the problem is the

sum of all vehicles used, multiplied by their respective cost modifiers. Shipments are

required to travel entirely on a single mode.

The data input consists of a network and shipping requirements. The network is

subjected to Dijkstra’s. Dijkstra’s returns a simplified network of shortest paths. This

simplified network, along with the shipping requirements, is subjected to the scheduling

heuristic. The heuristic assigns as many of the shipments as possible away from the

currently minimizing mode. This determines which shipments must be processed on the

minimizing mode. It determines how many vehicles are required to carry those

shipments. Finally, any remaining capacity is assigned. This process is repeated for each

mode.

v

Acknowledgements

 I would like to thank Dr. Weir for guidance throughout the development of this

thesis and especially for his aid in paring away what was unimportant and retaining what

was essential in the problem. I would also like to thank my sponsor, David Longhorn, for

providing the problem and for his insight into it.

I would also like to thank my family and my wife, whose support helped me

through this process. Finally, I would like to thank the Air Force Institute of Technology

and Transportation Command, for making this research possible.

vi

Table of Contents

Page

Abstract .. iv

Acknowledgements ... v

I. Introduction ... 1

The General Problem .. 1

Algorithm Overview ... 3

Scope of Research ... 4

Issues, Needs, and Limitations .. 5

II. Literature Review... 6

Chapter Overview ... 6

Vehicle Routing Problem Overview ... 7

Dial-A-Ride Problem Summary .. 7

Dial-A-Ride Problem Solution Techniques .. 9

Dial-A-Ride Discussion Summary .. 12

Q-Machine Scheduling Summary ... 13

Q-Machine Scheduling Heuristics .. 14

Q-Machine Scheduling Summary ... 16

Pragmatic Instance Summary .. 17

Chapter Review ... 19

III. Methodology .. 20

Broad Analysis of the Algorithm .. 20

Data Inputs .. 20

Dijkstra’s Algorithm ... 21

Scheduling Heuristic Overview .. 22

Scheduling Heuristic Inputs .. 23

Deadline Assignment .. 24

Infrastructure Assignment ... 25

Vehicle Assignment .. 27

Correction Step .. 30

vii

IV. Results and Analysis .. 31

Simple Test Case ... 31

Modified Simple Case ... 33

Multinodal, Multimodal Demonstration Case ... 36

Multimodal Large Scale Case ... 40

Appendix A: Shortest Path Network Generator.. 41

Appendix B: Ordered Scheduling Heuristic ... 47

Bibliography ... 82

viii

List of Figures

Figure Page

1. Overview of Algorithm…………………………………………………………………3

2. Dijkstra’s Algorithm…………………………………………………………………..22

3. Scheduling Heuristic Overview…...23

ix

List of Tables

Table Page

1. Simple Test Case Data Input... 32

2. Simple Test Case Results Output .. 32

3. Simple Test Case Vehicle Schedule ... 33

4. Modified Simple Case Data Input... 34

5. Modified Simple Case Vehicle Data... 34

6. Modified Simple Case Shipment Schedule... 35

7. Modified Simple Case Vehicle Schedule ... 35

8. Multimodal Simple Case Data Input... 37

9. Multimodal Simple Case Shipment Output .. 39

1

VEHICLE MINIMIZATION FOR THE MULTIMODAL PICKUP AND DELIVERY

PROBLEM WITH TIME WINDOWS

I. Introduction

The General Problem

 The algorithm developed here addresses a special case of the VRP. The VRP

considered is multimodal with time constraints. It is also subject to capacity constraints,

both on individual vehicles and on offloading at each node. This makes the problem

broadly equivalent to the general formulation of the M++RP, or multimodal

multicapacitated vehicle routing problem. However, the objective function used is based

upon the total numbers of vehicles of each type used. Consequently, the problem can also

be considered to be a special case of the Fleet Size and Mix Problem.

 The primary issue in solving any VRP is computational complexity. This is even

more true when addressing the M++RP, or the FSMP. The computational complexity is

exacerbated by the size of the problem and by the number of options available. It is not

reduced by the constraints. In fact, the constraints may increase the computational

2

complexity of the problem. The constraints may cause this issue by creating interference

between the shipments in their processing at specific locations or on specific vehicles.

 The FSMP has three specific issues related to computational complexity, which

substantially expand the problem. Firstly, the FSMP does not directly allow for tradeoff-

costing, either between particular days or between vehicle types. We concern ourselves

with the total number of vehicles used and not with the vehicles used on any particular

day. Because of this, vehicles can be considered ‘free’ with respect to the objective

function except if their assignment would cause more vehicles to be required. It is not

always possible to infer directly how the assignment of one vehicle might affect the

assignment of later vehicles. Because of this, the costs of assigning vehicles are generally

unavailable, directly, until the latter parts of the assignment.

 Secondly, in the FSMP, we do not know the number of vehicles available for any

given mode. This makes capacitating flow on any given mode difficult. It also makes it

difficult to determine the limitations on the number of shipments any given mode is

capable of carrying. Without knowing what a certain mode can carry, it is difficult to

determine what the other modes must carry.

 Thirdly, the FSMP generally requires multiple iterations to solve. We are seeking

the feasible solution using the fewest vehicles. The intuitive approach to this solution is

to determine a number of vehicles which is obviously sufficient. We could then reduce

the number of vehicles, checking to ensure feasibility with each reduction. This is

functional because it allows the determination of each mode’s capacity interactively with

the other modes. All methods of solution must somehow take this process into account.

3

Generally, this means correcting an original solution, which of course requires many

solutions of the VRP for a single FSMP solution.

Algorithm Overview

 The algorithm developed in this thesis is decompositional. It handles the TPFDD

by splitting it into two data-components. The first data component is the network, which

is processed by Dijkstra’s algorithm. Dijkstra’s returns a simplified version of this

network. The second data component is the shipping requirements. The shipping

requirements and network are then used as input for the second part of the algorithm.

This part of the algorithm is the iterative scheduling heuristic. It efficiently allocates the

shipments included in the shipping requirements to vehicles associated with paths on the

simplified network. This assignment is made so as not to violate any of the constraints

associated with the network, vehicles, or shipments.

Figure 1. Overview of Algorithm

4

 Dijkstra’s algorithm is well-researched, very fast, and very reliable. In this

instance it has only a small, conventional role. It seeks out the shortest path from each

node included in the original network to each other node included in the original network.

If we assume that the shortest paths are the best paths to use, we may use these paths in

place of a full routing algorithm. While the paths are unlikely to be ideal, they

approximate the ideal.

 The second component of the algorithm is the iterative scheduling heuristic

mentioned above. It iterates once for each mode. First, it determines the cheapest mode

which is capable of carrying each shipment. At this stage, the algorithm assumes that the

shipment is immediately loaded onto the mode on arrival, and when delivered, unloading

capacity is immediately available. After this stage, the algorithm determines whether the

number of shipments assigned to each mode is too great to be handled by the unloading

capacity of that mode. Any excess shipments are moved to a higher-cost mode.

 Finally, the number of vehicles required to carry any shipments assigned to the

most expensive mode is determined. Then, any excess capacity is used to deliver

shipments which were previously assigned to a cheaper mode. Any shipments which are

assigned to the most expensive mode are eliminated from the overall shipment list. The

process then repeats, disincluding the newly minimized mode. In the next iteration, the

reduced shipment list is used.

Scope of Research

 The purpose of this research is to develop an algorithm capable of solving a large

instance of the multi-modal FSMP. The algorithm will emphasize deadlines and arrival

5

dates as priority constraints in its solution. It will minimize vehicles in order of cost,

ensuring that the most expensive vehicles receive priority. Each shipment will be shipped

entirely on a single mode. Real-world aspects of the problem which are included in this

solution include vehicle and offloading capacity and variation in path lengths.

Issues, Needs, and Limitations

 The research is limited by its inability to model the real world with precision.

Many constraints are applicable to the real-world problem but beyond the scope of the

algorithm. This is generally due to added computational complexity. As a consequence,

the results given by the algorithm can only provide a guide to the number of vehicles

ultimately required for any given TPFDD and network.

 A major limitation of the system as it stands is the removal of constraints

regarding which modes can carry certain shipments. Certain shipments, according to a

TPFDD, are locked into a particular transportation type. This algorithm does not allow

for such limitations, but instead assumes that all shipments can, at least theoretically, be

carried by any mode.

 Another major limitation is the lack of multimodal solutions that is apparent in the

algorithm. Due to simplifying steps taken early in processing, the algorithm cannot

address the possibility of efficient or effective multimodal solutions. However, it is likely

that such solutions can be generated by slight modifications to the final solution set, as

with a genetic algorithm or Tabu search.

6

II. Literature Review

Chapter Overview

 The problem being reviewed in this text is a special case of the Dial-A-Ride

problem, itself a special case of the Vehicle Routing Problem, the M++RP (Moccia et al,

2008) The Dial-A-Ride problem is a subset of the general pick-up and delivery problem,

as defined in Savelsbergh and Sol’s “The General Pick-up and Delivery Problem”

(Savelsbergh et al, 2005) but the pickup and delivery problem is itself a refinement of the

“Truck Dispatching Problem” originally proposed by Dantzig and Ramser in their

eponymous paper. (Dantzig, 1959)

 The Vehicle Routing Problem has received a great deal of attention over the

years, but the particular refinement being dealt with in this paper is substantially less

studied. In particular, the M++RP deals with multi-modal, multi-time constraints, and

multiple capacity constraints, in addition to the constraints more usually associated with

the VRP, but without depots. (Moccia, 2008: 2)

 The problem can, however, also be approached as a special case of the sequential

machine scheduling problem, for non-homegenous machines, or the Q-machine

scheduling problem. While the problem can be viewed as such, the more interesting

applications of Q-machine techniques for this problem relate to the use of the Q-machine

methods for solving the ‘scheduling’ component of a decomposed problem, and so that is

where our study will focus.

7

 This segment of the paper will first review the Vehicle Routing problem solution

techniques, emphasizing the state of exact algorithmic solutions, and the decomposition

and heuristic mixed methods for achieving large-scale near-optimal solutions, largely in

order to clarify the difficulty of achieving a reasonably accurate solution in a short time-

scale on a problem with such great computational complexity. Then we review the

techniques used in Q-machine scheduling as approaches to the solution of the

decomposed problem.

Vehicle Routing Problem Overview

 The vehicle routing problem is the problem consisting of finding an optimal route

for either one or multiple vehicles between multiple locations, each of which will

generally place a load on the vehicles, to be transported to a second location. This second

location may be the depot of the truck, in simpler problems, but is often a delivery

location. In this case, the problem becomes the Vehicle Pick-up and Delivery problem;

more specifically, the problem may be constrained to require that the pick-ups and

deliveries occur according to a certain schedule, in which case the problem becomes the

Vehicle Pick-up and Delivery Problem with Time Windows.

Dial-A-Ride Problem Summary

 The most studied problem class which closely resembles the one discussed in this

paper is known generally as the ‘Dial-A-Ride’ Problem. The Dial-A-Ride problem is a

special case of the Vehicle Pick-Up and Delivery Problem with Time Windows, with

vehicles operating from and returning to an established depot. The problem is subject to

8

vehicle capacity constraints and constraints on the maximum amount of time a customer

may ride in the vehicle.

 The Dial-A-Ride problem differs from the studied problem in several particulars.

The first is that the Dial-A-Ride problem does not generally have to deal with

infrastructure constraints on loading or offloading of shipments. This allows the problem

to be simplified in significant ways, since a node cannot be occupied by a vehicle’s

unloading, and unusable to other vehicles, from other paths. The vehicles, however, may

interfere with one another, if the capacity constraints on the arcs are used to create that

effect. The second is that the Dial-A-Ride problem generally deals with homogeneous

vehicles, rather than the multimodal approach required in dealing with the studied

problem. This creates additional computational complexity, for two reasons. The first is

that the various vehicles can be traded off, one against the other, providing another aspect

of complexity, rather than simply requiring the addition of more homogeneous vehicles

(as in the Dial-A-Ride problem) the second constraint is that the path from any given

node to any other node is unique in the Dial-A-Ride problem, as generally understood,

rather than having different distances and speeds for different modes. Finally, perhaps the

biggest difference between the Dial-A-Ride problem and the problem studied here is the

problem of scale. The Dial-A-Ride problem generally deals in vehicles which are each

capable of handling multiple loads, whereas the problem studied here generally deals in

loads which will require multiple vehicles. Hence, in the Dial-A-Ride problem, the core

issue is ensuring that the vehicles waste as little travel time as possible in getting as many

loads as possible to as many locations as possible. For the studied problem, the emphasis

must be on ensuring that the correct vehicles travel to the correct locations at the correct

9

times, so as to prevent conflicts, and most importantly ship them efficiently and cheaply.

Finally, the Dial-A-Ride problem is often solved for a single vehicle, rather than for

multiple vehicles. While the Dial-A-Ride problem can be extended easily from a single-

vehicle technique to a multi-vehicle solution under many circumstances, the particulars of

the M++RP make it ineffective to extend from a single vehicle solution to multi-vehicles,

especially since the particular problem being studied has as one of its primary objective

function the use of minimum numbers of vehicles of each type.

Dial-A-Ride Problem Solution Techniques

The Dial-A-Ride problem is computationally complex, but also very fragile. The

number of variables involved means that the cost of accurate solutions to large-scale

problems is often prohibitively high, and instead heuristic models must be used.

Nonetheless, exact solutions can be found for the smaller problems, and have been. There

has also been significant research into the extension of high-optimality techniques for

problems after decomposition or alteration. However, the most interesting part of these

techniques, for our purposes, is the development of decomposition and simplifying

techniques to be used in conjunction with heuristics. For the Dial-A-Ride problem, it is

often possible to simplify the problem to the point where an exact solution to the problem

becomes feasible, even if the problem loses some fidelity in the process; for the M++RP

problem, and more specifically, for the pragmatic instance of the M++RP problem being

studied in this paper, simple decomposition will not result in an exactly solvable set of

problems.

10

In 2004, Lu and Dessouky demonstrated a method for efficient generation of exact

solutions to the Dial-A-Ride problem. The method was reliant upon an integer

programming formulation of the problem, which was then solved using a simple branch

and bound technique. It solved a problem consisting of 5 vehicles and 17 customers in

under three hours. This demonstrates the complexity of the problem, since using only 5

vehicles and 17 customers generated that level of computational demand. The advantage

of Lu and Dessouky’s innovation was that it added a level of softness to calculations

regarding time and capacity constraints; however, even with these significant changes to

the fundamental paradigm, the algorithm produced a relatively time-costly solution to a

relatively small problem. (Lu et al, 2004)

 Psaraftis demonstrated an exact algorithm for the solution of the Dial-A-Ride

problem in Transportation Science, dealing with multiple vehicles. His technique

provides an exact solution, using a dynamic programming algorithm, which efficiently

and effectively calculated the best method for dispatching the vehicles, including route

and schedule. Originally, Psaraftis developed the technique for a fairly simple variant,

involving only one vehicle, but it was eventually extended to fairly complicated multi-

vehicle variants, including time constraints. The downside of Psaraftis’ approach is that it

only optimizes with respect to total distance travelled. While total distance travelled is of

a certain commercial interest, it is effectively irrelevant to our particular problem because

of the scaling issue. In our problem, distance travelled is a concern secondary to our

primary goal- as we know, ultimately, that our vehicles must travel from pickup to

delivery, and then to pickup, rather than the interchanging sequence possible in the

generic Dial-A-Ride problem. Equally, Psaraftis’ solution does not address the problem

11

of total vehicle number, which is what our algorithm is ultimately designed to address.

(Psaraftis et al, 1980, 1983).

 More useful to us in this instance is the generation of large-scale solutions to the

Dial-A-Ride problem, which generally involves a heuristic approach. In most cases, the

approach consists of a simplifying step, followed by an algorithm which approximates

solutions to the reduced problem. In simpler cases, the problem is simply reduced directly

using an analytical approach as in the generation of lower and upper bounds, and then

solved exactly, or very closely. In large scale cases, the problem is decomposed and then

approached with a heuristic technique, which provides a lower-quality but equally lower-

cost solution to the problem, and is often the only feasible approach to such a problem.

 Baldacci et al begin by generating a specialized integer formulation of the

problem, and then the dual of that form. They then use two heuristics in conjunction to

achieve a near-optimal resolution of the dual, which in turn they use to determine which

paths meet certain lower-bound and upper-bound criteria. They then remove all paths

which are outside these bounds, and solve the reduced problem using an integer

programming technique, or if the problem remains too large, attempt to resolve the size

disparity using branch-and-bound techniques. (Baldacci, 2011)

Sexton et al (Sexton, 1985) relied on Bender’s decomposition, separating the problem

into a ‘routing’ component and a ‘scheduling’ component, and then solving with a

heuristic. This technique is very efficient for the resolution of the Dial-a-Ride problem,

because the paths are effectively independent of scheduling. If one can determine which

paths are most efficient, then the problem should nearly always solve optimally subject to

those paths, which allows for a drastic reduction in the complexity of the problem.

12

 While these decompositional techniques are effective in resolving some of the

computational complexity of the problem, the decomposed problems remain very

complex. Even after decomposition of the problem, we are left with a routing component

equivalent to solving the shortest path problem for each of the customers, and a

scheduling problem for parallel machines. While this technique is reasonable for

resolving a problem involving only a few nodes, arcs, customers, and vehicles, handling

the problem becomes substantially more difficult at larger scales.

 An approach to multi-modality for a flexible number of vehicles was developed

by Moccia et al, and focused upon the use of column generation heuristics. In this case,

the formulation of the problem used ‘virtual networks’ to represent multimodal shipment

transfers, developing false links with associated cost functions and time costs to represent

the price of transferring from one mode to another at a given linkage. This methodology

results in a reasonable solution for relatively large variants of the VRP. However, the

algorithm used in the paper could only handle a relatively small system, though with

great fidelity. (Moccia, 2008)

Dial-A-Ride Discussion Summary

 Solutions to the Dial-A-Ride problem are very rarely exact, depending instead on

heuristic algorithms, often combined with decomposition, to solve even relatively simple

problems. This is partly due to the limitations imposed by integer programming

formulation, which the majority of the techniques use as a beginning for their solution.

Any integer programming formulation must address tens of thousands, or even hundreds

of thousands of variables, addressing which path, if any, each vehicle must be on at

13

which hour of which day, carrying what load. By extension, almost any solution to a

large-scale Dial-A-Ride problem relies on a simplifying step, followed by powerful

heuristics- and even so, will generally provide only a relatively slow solution to a

relatively small problem.

 For more details on the history of methodologies for studying the Vehicle Routing

Problem, readers are recommended to Fifty Years of Vehicle Routing by Gilbert Laporte,

in the 43rd issue of Transportation Science.

Q-Machine Scheduling Summary

 One approach to the M++RP problem is to reduce it to a scheduling component

and a routing component. Once the shortest routes have been determined, the problem

can then be handled as a scheduling problem, treating each of the modes for each path as

a machine, with the vehicles treated as a global resource shared between the machines.

 The transformation of the problem to a Q-machine scheduling problem reduces

the complexity of scheduling significantly, but we are left with a highly computationally

demanding problem nonetheless. At this stage, integer formulation of the resulting

problem becomes more feasible and extensible to very small variants of the problem

(Wagner, 1959) but the establishment of a more effective heuristic technique remains

necessary for moderate to large scale scheduling problems. (Verma, 1999) In many cases,

the most efficient method remains a scheduling ‘rule,’ modified as necessary by

evolutionary algorithmic techniques to improve upon the initial high quality solution.

Because of the issues of interference between various shipments, even a minor shift in the

location of a single shipment can have major cascading effects on the efficacy of the

14

solution as a whole. This is particularly true as the chosen metric, number of vehicles

used, is dependent upon peak usage across the various vehicles, not upon the total usage

of each vehicle type.

Q-Machine Scheduling Heuristics

 The simplified form of the M++RP that we are solving in this instance is

equivalent to solving , or the parallel machine scheduling problem with

machines with non-equal speeds, which are not dependent on the specific job, with setup

times, in order to minimize tardiness, and then modifying that schedule in order to

minimize m, while holding the previous objective value static. This variant of the

problem has seen significant research because of its industrial significance, and

consequently, many algorithms have been developed and applied to the problem.

However, extending an exact solution to large instances of the problem remains elusive.

 Most solutions to the formulation for large problems rely upon a prioritization

heuristic, but unfortunately no single index appropriately addresses , and even if it

did, the flexible nature of the number of machines means that while we could solve for

weighted tardiness, we would not be able to prioritize reduction of machines; priority

rules by definition assign a job to the first free machine, rather than attempting to reduce

total machine numbers.

For specifically, priority rules are difficult to implement because of the

complex nature of allocation. No specific variable, ratio, or difference can provide an

efficient and effective index in all instances. Instead, the ATCS prioritization rule was

15

developed, as a combination of all of the factors which might cause a particular job to be

the priority job for a particular freed machine, weighted dependent on the particular

characteristics of the machines and jobs.

 The Apparent Tardiness Cost with Setups is one heuristic which has been

developed to handle . The ATCS calculates an index based upon the

processing time, setup time, objective weights, due date tightness and range factors, and

the severity of the setup time. When a job is completed, the job with the next highest

index is assigned. The Apparent Tardiness Cost with Setups is very efficient at handling

large scale problems, and is equally very effective at generating an optimal or near-

optimal solution. However, the ATCS does not effectively handle the in-parallel nature of

the infrastructure constraints which are to be dealt with in the current problem, simply

because those constraints are not factored into its system, and requires as part of its

algorithmic structure the existence of a defined number of vehicles. Regardless, the

ATCS is a very efficient approach to the large scale problems being handled in this

instance for minimization of weighted tardiness. It is worth noting that in the seminal

paper on the topic, Lee used a corrective simulated annealing technique to improve on the

value of his final solution, relying on the ATCS rule only to generate a feasible high

quality initial solution. (Lee et al, 1997)

 Beyond the constructive algorithms, designed to generate a feasible and near-

optimal solution, we find refining algorithms, designed to improve on an existing

schedule. These techniques generally apply a local search heuristic, moving from one

good solution to similar solutions stepwise. Two of the most commonly used heuristics in

16

this role are Simulated Annealing and Tabu Search, each of which searches locally to for

improvements to the currently generated schedule.

 Simulated Annealing techniques depend upon a large number of solutions, which

randomly are traded for other ‘nearby’ solutions. Better solutions are generally preferred,

and as the algorithm progresses, the preference for better solutions increases, until the

algorithm is simply stepping to the local optimum. Similarly, Tabu search allows for an

algorithm to pass into infeasible territory, if the objective function can be improved by

doing so, by providing a penalty function associated with the infeasibility. As the

algorithm progresses, it increases the penalty to achieve an effective hard feasibility.

Q-Machine Scheduling Summary

 The solutions to Q-Machine scheduling expose us to the idea of prioritization

rules which allow for the solution of the problem for particular objective functions. These

methods are not effective for solution subject to the specific criteria of vehicle

minimization, but they provide a starting place for the development of our own rules and

solution index.

 Simulated annealing and the Tabu search show us the next potential stage of the

development of the research, which is to develop a refining algorithm, along Tabu,

simulated annealing, or evolutionary algorithm lines and use it to refine the solution into

a specific high quality solution. The difficulty in implementing such a solution lies in the

complexity of handling hundreds or thousands of large scale solutions to the problem.

Without those, the refinement the heuristics can provide is minimal; with them, the

algorithm becomes cumbersome.

17

Pragmatic Instance Summary

 In this paper, the particular problem we are studying is the M++RP problem, at

large scales. The particular instance of the problem which is being discussed which we

are using as a pragmatic instance of our general problem is a Troop Phased Force

Deployment Data, or TPFDD. A TPFDD consists of a large number of transportation

requirements, from a number of sources to a number of sinks, across a defined network.

The development of transportation requirements and vehicle numbers required to move

them is an interactive multi-stage process, as the number of vehicles themselves

necessitate infrastructure and movement capacity at the vehicle level. According to

Clausewitz’ Principles of War, “The provisioning of troops, no matter how it is done,

whether through storehouses or requisitions, always presents such difficulty that it must

have a decisive influence on the choice of operations.”

 As a consequence, it is of particular importance to be able to quickly generate

reasonable estimates as to the number of vehicles of various types required to execute a

TPFDD, as generating these estimates will most likely be required multiple times, in a

feedback process with both analysts and decision-makers. However, a TPFDD is

remarkably large; as many as ten thousand transportation requirements (customers),

across a network of as many as several hundred nodes, with multiple modalities, over the

course of weeks or even months, subject to constraints on earliest and latest arrival, as

well as to constraints on infrastructure for offloading that will be available, and

potentially to many other over-riding constraints which are beyond the scope of this

model.

18

 It is a priority in all strategic situations to ensure that all deadlines and earliest

arrival dates are met, subject to feasibility; the number of vehicles used is secondary to

the accomplishment of the purpose behind the TPFDD, which may rely on any particular

requirement or any subset of them being performed to requirements. For this reason, the

algorithm generated here must prioritize first that all deadlines are met and only as a

secondary concern handle the vehicle minimization techniques.

 With that caveat, the solution of a vehicle minimization problem requires a

complete solution for the problem including vehicle allocations and paths, because of the

interaction of infrastructure capacity requirements. Because of this, and because any

given solution will tend to depend on the number of vehicles available, the problem must

be solved multiple times during any particular attempt to minimize the vehicle numbers.

At the very least it must be solved once for each mode. This places an even higher

priority upon high processing speed than was already necessitated by the size of the

problem and the requirement for interactive feedback.

 In the particular problem being studied it is noteworthy that the shipments will

nearly always require multiple vehicles to carry; this allows for certain simplifications

and changes of emphasis in the details of our algorithm. It is also worth noting that since

the particular scope of the TPFDD is in-theater, in our application we are unlikely to find

a solution that requires transshipment from one mode to another; instead, despite the

multi-modal nature of the problem, we may with reasonable safety confine ourselves to

the use of single modes for the duration of the trip, assuming the cost and availability of

transshipment to be prohibitive.

19

Chapter Review

 Our final summary concludes that the particular computational complexity of the

large scale M++RP requires an approach which is computationally simple, as in the Q-

Machine scheduling priority rules, applied to a simplified problem generated according to

the decompositional rules used for smaller Vehicle Routing Problems. With the

combination of these two techniques, we can drastically reduce the calculation time

required for the generation of a feasible solution, without sacrificing unduly the

optimality of our solution. The interactivity of our pragmatic instance specifically

encourages this, as the solutions are intended as springboards for analytical thought,

rather than implementable final answers.

 With this sort of rough-cut approach to a problem of this computational

complexity, the emphasis must be placed upon reducing the processing time required to

handle the problem. Without careful management of processing time, we run the risk of

an impractical or impossible technique, which will fail to generate the timely, effective

solutions required.

 For this reason, our ultimate implementation relies upon a series of priority rules,

applied in careful order to the shipments, and solved in a specific order in order to

preserve feasibility, while minimizing vehicle number requirements.

20

III. Methodology

Broad Analysis of the Algorithm

 At the highest level, the algorithm consists of three major steps. First, the

incoming data is separated into a network component and a shipping requirements

component. Second, the network component is processed using Dijkstra’s algorithm, to

create a network of shortest paths. Finally, the scheduling heuristic assigns the shipping

requirements to the simplified network at need. This organizational hierarchy will serve

as the structure for this chapter, as we follow the flow of data processing throughout the

algorithm.

Data Inputs

 The algorithm requires three different major data components. The first of these

components is the network itself. The network is composed of a series of nodes, with

associated distances between them, and a value for the daily unloading capacity of the

nodes in the units which are later used for shipment weight. Each of these distances and

unloading capacities must be defined for each mode. In the case of a node-node pairing

which cannot be travelled by a specific mode, it is possible to assign a ‘big M’ value for

the transportation distance in order to force the shipment onto a higher-cost, but feasible,

mode of transport. However, doing so can only cause the algorithm to transfer the

shipments upward in cost.

21

 The second component of data required is vehicle information. The algorithm

requires data on vehicle speed, capacity, and the number of modes. This must parallel the

number of parallel modal networks provided. These data are used throughout the

algorithm. Speed, particularly, is used in all three major components of the scheduling

heuristic, either directly or indirectly.

 The third component of data is shipping requirements. Shipping requirements are

stored as a series of lists. Instead of directly manipulating the data associated with the

shipment, the algorithm uses the number of the shipment as a serial. Moving only integer

values reduces the time required to sort and generate lists significantly.

Dijkstra’s Algorithm

 Dijkstra’s algorithm is used in place of a more complicated routing solver in order

to approximate the ideal routes for vehicles. The shortest paths generated by Dijkstra’s

are good approximations if the vehicles are generally required to return to their depot

after delivery to only one site. If this is held to be so, the routing problem becomes

generally the problem of travelling from point A to point B to point A as efficiently as

possible. This is equivalent to the shortest path problem.

22

Figure 2. Dijkstra’s Algorithm

 Dijkstra’s algorithm is a very efficient algorithm for solving the shortest path

problem, provided that the distance desired is from each node in a network to each other

node in the same network. It works by expanding upon paths of known distances and

tracking the shortest path discovered to each node. At each step, it advances to the next

nearest node to the origin node. It records any nodes for which the shortest known path is

longer than the distance to the current node from the origin node, plus the distance from

the current node to the observed node. It then corrects their distances down to the newly

discovered shortest path. Finally, it advances to the node which is the next closest to the

origin node, after the currently selected node.

Scheduling Heuristic Overview

 The scheduling heuristic used in this algorithm is ultimately the core of the entire

procedure. Dijkstra’s algorithm can be viewed as a pre-processing stage that puts the

input into a form conducive to the use of the scheduling heuristic. The scheduling

heuristic bears special attention, especially as it comprises the majority of the complexity

of the algorithm as well as the key part of its function.

23

 The scheduling heuristic has four key parts; these are: Deadline Assignment,

Infrastructure Assignment, Vehicle Assignment, and the Correction Step. Deadline

Assignment and Infrastructure Assignment can be viewed as pre-processing steps,

Vehicle Assignment as the core step, and the Correction Step as a post-processing

method. However, each of these steps will be iterated once for each mode, as the overall

heuristic determines the minimum number of vehicles required for only one mode at a

time.

Figure 3. Scheduling Heuristic Overview

Scheduling Heuristic Inputs

 The inputs for the scheduling heuristic have two sources. The first is Dijkstra’s

algorithm, mentioned above, which provides us with a simplified network of shortest

paths for use in the calculation of distances throughout the heuristic. The second is the

24

shipping requirements component of the original data, which is passed on in the form of a

list of shipment numbers and a series of associated lists detailing arrival date, shipment

size, and deadline, all accessible using the shipment number as a serial. The algorithm

also acquires the vehicle data directly from the original listing.

Deadline Assignment

 Deadline analysis is the simplest of the four stages of the scheduling heuristic, and

the quickest. In deadline analysis, each of the shipments has a time-available value

calculated, which is simply the difference between arrival date for the shipment and the

deadline date. This is the amount of time that a shipment is available for shipping. We

compare this value to the speed of each mode and the distance for that mode between the

source and sink for the shipment, then, add the amount of time required to unload the

shipment. A mode for which distance/speed plus unload time is greater than the time

available certainly cannot carry a given shipment. As a consequence, we know that the

shipment must be moved higher in cost- to a faster mode.

 Deadline analysis serves two functions simultaneously. First, it ensures that

shipments which would be required to run on a more expensive mode for reasons of

available time are assigned upwards earlier. This saves the time of calculating that they

must be pushed up during the more computationally intensive infrastructure assignment

stage. Second, it ensures that these shipments cannot cause other shipments to be forced

upwards during the infrastructure stage.

 When a shipment’s cheapest potentially feasible mode has been determined by the

deadline function, it is assigned to a list associated with that mode. There is a list for each

25

mode at the end of the deadline stage and each shipment will be in one, and only one, of

those lists. These lists form the input for the Infrastructure Assignment stage of the

algorithm.

Infrastructure Assignment

 Infrastructure Assignment can be viewed as another preprocessing stage of the

algorithm. However, it is also fair to consider the Infrastructure Assignment stage as the

stage of the algorithm wherein the unloading constraints are taken into consideration.

While unloading is considered at the Vehicle Assignment stage as well, it is at this stage

that it is most likely to cause a shipment to be moved or bumped from a mode, as

opposed to simply forcing rescheduling. In other words, this is the stage where overall

capacity of infrastructure unloading is taken into account.

 This is achieved using a 2-dimensional array of doubles. Because we handle each

mode separately, it is not necessary to maintain the full node-mode-day pairing for

tracking unloading. Instead, we simply track the node-day pairing for the mode which is

currently being analyzed.

 The algorithm starts from the earliest arrival date, and begins to check through the

list of shipments assigned to the particular mode. As it iterates through the shipments, if it

finds any shipment with the arrival date it is currently searching for, it attempts to assign

them immediately to the mode. If it fails, it adds them to the list for the next most

expensive mode. If there is no more expensive mode, the shipment is retained at this

mode. After processing through the list once, it increases the arrival date by one and

26

processes through again. This is repeated until all shipments have been processed through

the system.

 Processing based upon earliest arrival date is known as the EAD priority rule.

This rule has several advantages. Primarily, it ensures that the infrastructure begins work

as early as possible. That is to say that since no shipment can arrive prior to the shipments

with the earliest arrival date, if they are the first shipments assigned, we can guarantee

minimal lead-time, which helps in reducing wasted processing time.

 EAD is approximately equivalent to the First Come First Served rule, which is

intuitively a very efficient means of ensuring that the infrastructure is efficiently used.

The primary failing of FCFS and EAD is relative to rules such as Shortest Processing

Time or Weighted Shortest Processing Time. EAD is efficient at ensuring the maximum

possible tonnage is carried, but does not account for weighting across tonnages.

Fortunately, in our case, it is assumed that all shipments have equally inviolate priority.

 The process of assignment for infrastructure is a relatively simple one. Each

shipment is taken in order, and the algorithm searches the array to attempt to find space to

unload it. At this point, we do not concern ourselves with vehicles. However, we do add

the constraint that no shipment can be unloaded before its arrival time plus time of travel

to the unloading point.

 In order to search the array for the appropriate amount of time, we first calculate

the time required for unloading. This is simply the size of the shipment divided by

unloading capacity. We then find our start point, which is the arrival time for the

shipment plus the travel time required on the mode in use. Finally, we iterate from this

point to the deadline for the shipment, summing all free time we find.

27

 The array of doubles used to track the amount of free infrastructure capacity is

made up of double representations of the amount of capacity free on any given day. Each

value is between 0 and 1. If the value is 0, the day is completely free. If the value is 1, the

day is completely full. Any value other than these two represents a partially used day. The

algorithm adds the remaining portion of the day for each day between the start time and

the deadline, except the first. For that day, it adds the remainder only if the already

allocated portion of the day is larger than travel time. This prevents the shipment from

being treated as unloading while it is still in travel.

 If the algorithm finds sufficient space for the unloading of the shipment, then the

shipment is added to the output list for this mode. If it does not, then it is added to the

output list for the next most expensive mode. It is not necessary at this stage for the

loading to be contiguous, as the specifics of assignment are handled at the vehicle

assignment stage.

Vehicle Assignment

 The vehicle assignment algorithm is the core of the scheduling heuristic. It

receives a list of shipments which must be assigned to the most expensive mode from the

infrastructure assignment component, and it converts that list into both a detailed

schedule and a requirement in terms of number of vehicles. Because it is so essential, and

because it is complex, it merits a more detailed look than either the deadline or

infrastructure components of the heuristic.

28

 The vehicle assignment algorithm uses the same method of selection for

shipments as the infrastructure method. It chooses them based on earliest arrival date,

tracking down through the assigned list, iterating each arrival date in turn.

 Once the shipment has been chosen, the algorithm first determines the number of

vehicles necessary to carry the shipment. This is the size of the shipment divided by the

capacity of the vehicle, rounded upwards. The algorithm then begins the search for

appropriate vehicle and unloading space for the shipment.

 The first step in this process is identifying a free space on a vehicle. Much as in

the infrastructure array, we use an array of doubles to track the usage of the vehicles.

Unlike in the infrastructure array, however, we must seek to gain continuous use of the

vehicle for the full duration of the trip. So rather than simply beginning at our starting

point and proceeding to deadline, summing the free space, we use a rather more

complicated summation process. We begin at the arrival day for the shipment and iterate

through the chosen vehicle’s days. If we find a day that is empty, we add 1 to our

currently found free time. If we find a day that is not empty, we add the remainder of its

capacity to our currently found free time. If, after adding the new capacity, the free time

found is greater than the amount needed, we mark our original start time as an

appropriate start time for the shipment-component and proceed to the infrastructure

correction step. If not, we set our total free time equal to the remainder, and set the

current day as our start time.

 If we fail to identify a free spot large enough to carry the shipment and our

vehicle isn’t one that was generated just for this shipment, then we generate a new

29

vehicle to carry the shipment. If the vehicle was generated just for this shipment, then we

ignore the deadline limitation and assign the shipment as late, if necessary.

 If, however, we identify a free spot in the vehicles where the shipment could be

carried, we must now confirm that there is infrastructure available to unload the shipment

in the appropriate place. This process is identical to the process for finding free space on

a vehicle, except that new infrastructure cannot be generated. If we find ourselves pushed

past the deadline on infrastructure, we instead simply must assign past the deadline.

 If the start time found by the vehicle-search is confirmed by the unload-search,

then we may add it to our list and begin searching for vehicle and unload space for the

next shipment-component. However, if it is not, we find the next start time available

among the vehicles, starting at the one suggested by our unload-search. If the start time

required correction, we repeat the process until the shipment is assigned.

 If at any time we are forced to use a new vehicle, we track the number of this

vehicle. The last vehicle we are forced to generate is the minimum number of vehicles

required to service this set of requirements.

 Finally, when we have found appropriate start times for all the components of a

shipment, we allocate the shipment and fill the capacity in the unload and vehicle arrays.

It is at this point that we remove the shipment from the shipment requirements array, to

represent that it has been assigned.

30

Correction Step

 The correction step is the final process in the scheduling heuristic. In this stage,

the algorithm uses the same search procedures used in the vehicle assignment stage,

iterating through all unassigned shipments in EAD order. However, if it fails to find

capacity, it simply moves on to the next shipment, rather than generating a new vehicle.

 It treats the number of vehicles generated by the vehicle assignment step as a

capacity on the amount of flow the vehicles are capable of handling. However, if a

shipment can be assigned, it is assigned and deleted from the shipment list.

31

IV. Results and Analysis

Simple Test Case

 In order to examine the capabilities of the algorithm, a series of test cases were

created. The test cases were deliberately chosen for ease of solution, in order to make

comparison against an intuitive or obvious perfect solution, simple for the reader. In the

first case, our study case is hyper-simplified and consists of only 5 shipments, each with a

three-day gap between arrival and delivery, arriving at the same source node, one per day,

over a five day period, all of which are destined for the same sink node.

 For simplicity's sake, this example deals in only one mode and the sizes of the

five shipments are equal to the capacity of the vehicles, resulting in exactly one shipment

being carried by each vehicle per trip. The vehicle was given a speed of 100, and the

distance between nodes 1 and 2 was set to 100; also, the unloading capacity for the sink

node was set to 100, to simplify displaying the outcome.

32

1. Simple Test Case Data Input

Shipment Size Source Sink Arrival Deadline

1 100 1 2 1 4

2 100 1 2 2 5

3 100 1 2 3 6

4 100 1 2 4 7

5 100 1 2 5 8

 The algorithm returned the following as a feasible resolution of the system,

determining that the number of vehicles required for such a solution was three.

2. Simple Test Case Results Output

Shipment Start Time Arrival Time Vehicle Number Ahead of
Deadline

1 1 4 1 Yes

2 2 5 2 Yes

3 3 6 3 Yes

4 4 7 1 Yes

5 5 8 2 Yes

 Examining the above solution, it is possible to chart the assignments which each

of the three vehicles had for the duration of the transportation solution; for clarity, the

chart is shown below.

33

3. Simple Test Case Vehicle Schedule

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 S1
delivery

S1 unload S1 return S4
delivery

S4 unload S4 return Idle

2 Idle S2
delivery

S2 unload S2 return S5
delivery

S5 unload S5 return

3 Idle Idle S3
delivery

S3 unload S3 return Idle Idle

Modified Simple Case

 The algorithm, then, is capable of achieving an intuitive result on a small scale.

Given that this test case is equivalent to the case where all shipments can be carried on a

single cheapest mode, that data shall not be repeated here. However, a secondary

component of the algorithm which bears examination is its capacity to compensate for a

shipment being forced onto a high cost mode, by utilizing the idle capacity of that mode

to the greatest extent possible. As a consequence, our second test case, the modified

simple case, will change the base case in two ways. First, it will add a second mode,

considered more expensive than the first, which travels at a rate of 200 units per day, with

identical independent unloading capacity to the first mode. Second, it will change the

deadline on the first shipment to 2.

Because the first shipment has a deadline of 2, it is impossible for it to be

delivered by the deadline using the first or second modes, and so it will be forced to

travel on the second mode in order to minimize the violation of the deadline

(guaranteeing a minimum number of vehicles for the second mode of at least one).

However, the rest of the vehicle's time is not accounted for, and so we must allocate as

34

many shipments as possible to the idle time on that vehicle in order to minimize the

number of lower cost vehicles used.

 In this instance, the utilization of the mode allows for two additional shipments to

be handled by the most expensive mode, on the same vehicle that is handling the first

shipment, resulting in two fewer vehicles being required on the first mode.

4. Modified Simple Case Data Input

Shipment Size Source Sink Deadline

S1 100 1 2 2

S2 100 1 2 5

S3 100 1 2 6

S4 100 1 2 7

S5 100 1 2 8

 In this case, it is worth detailing the differences between the two modes, as well as

their similarities:

5. Modified Simple Case Vehicle Data

Vehicle Capacity Unload Rate Speed

1 100 100 100

2 100 100 200

35

 The chart of our delivery times, travel times, and vehicle pairings is given below,

and below that, the chart of the vehicle time-assignments is given.

6. Modified Simple Case Shipment Schedule

Shipment Start Time Arrival Time Vehicle Number Ahead of
Deadline

S1 1 2.5 1 (Mode 2) No

S2 3 4.5 1 (Mode 2) Yes

S3 3 5 1 (Mode 1) Yes

S4 5 6.5 1 (Mode 2) Yes

S5 6 8 1 (Mode 1) Yes

 Because the second mode performs deliveries in one half-day, the pattern is that

on the 'outgoing' day, the travel is completed outgoing, and half of the unloading is done,

and on the next day, the remainder of the unloading is completed, and then the shipment

is returned.

7. Modified Simple Case Vehicle Schedule

Vehicle Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day7
1 (Mode 2) S1 Out S1 Return S2 Out S2 Return S4 Out S4 Return Idle
1 (Mode 1) Idle Idle S3 Out S3

Deliver
S3 Return S5 Out S5

Deliver

 This demonstrates the capacity of the algorithm to combine minimization

techniques in order to reduce the impact of forced increases in the number of high-cost

vehicles being deployed, by utilizing those new, largely idle, vehicles in order to decrease

36

the number of vehicles required at lower tiers. Of course, in a more complex problem,

resolutions will be substantially more complicated to come by, and in most cases, less

efficient, and less obviously so. However, the general principle of efficient allocation still

holds in more complex cases.

Multinodal, Multimodal Demonstration Case

 The complexity of the algorithm, and its potency, rests upon its capacity to deal

efficiently, and quickly, with problems that handle both multiple sources and sinks, and

multiple modes, on large scale, but of course it is difficult to demonstrate efficiency in the

large scale, because by-hand and intuitive solutions are hard to come by. Instead, we

examine the efficacy of the algorithm using a smaller multimodal, multinodal pattern.

 In this instance, our case involves three modes, over four nodes, each equidistant

at 100 units from each other node, and each capable of unloading 100 units per day from

each mode. For this problem, the speeds for our three vehicle types are 50, 100, and 200

units and the capacities are the same. We will process twelve shipments across the nodes,

using nodes 1 and 2 solely as sources, and nodes 3 and 4 solely as sinks. The sum of all

tonnage shipped is 2400 and the arrival times and deadlines are broadly separated,

allowing for a powerful estimate of 2400/10 or 240 tons per day of shipping power being

a floor on the number of tons per day of vehicle required to handle the shipping.

 Of course, at this tier of processing, the outputs become significantly more

complicated. As a consequence, we will simply list the vehicle number, node, start time,

and mode for each shipment and shipment-component.

37

8. Multimodal Simple Case Data Input

Shipment
No.

Source Sink Size Arrival Deadline

1 1 3 100 1 7
2 2 3 200 1 7
3 1 4 300 1 7
4 2 4 100 1 7
5 1 3 200 3 10
6 2 3 300 3 10
7 1 4 100 3 10
8 2 4 200 3 10
9 1 3 300 1 7

10 2 3 100 1 7
11 1 4 200 3 10
12 2 4 300 3 10

This list is not the original data output from the program, but has been sorted to

highlight both the process behind the assignment of shipments to specific vehicles and a

problem induced by the specific granularity of the shipments. Note that the shipments fit

neatly together, as regards unloading. This is due to the algorithm’s deliberate seeking of

gaps at every stage of a schedule’s creation, resulting in carefully stacked shipment

unloading times. Of course, this method is aided by the uniformity of vehicle unload-

times, which are in the algorithm artificially held constant, as a relationship between the

size of vehicle, and the capacity for unloading that particular vehicle at that particular

node. Nonetheless, the algorithm has finely used all available unloading space in this

limited example.

A notable, potential error is the double-booking effect visible in the use of mode

2, node 3 unloading capacity. Shipment-components are being loaded simultaneously,

resulting in unloading times taking up the same block, theoretically. This, of course, is an

38

impossibility according to the strict rules of the problem. The shipments, according to our

previous assumptions, use all unloading capacity totally and therefore cannot be unloaded

simultaneously.

The cause of this apparent error is double-booking. The shipments are both

attempting to use the latter half of the first day on which they both arrive, and the first

half of the next day. As the algorithm does not have sufficient granularity to track half-

days, the shipments are nominally double-booking.

The next table shows the data with a view to the particular assignments made to

specific vehicles at specific times. Notably, it sorts by mode, then vehicle number, and

then start-time, in order to demonstrate the relative efficiency and inefficiency of

allocation according to the algorithm.

In this case, the algorithm generates an essentially perfect solution to the system,

using virtually every open space, and the result is intuitively near-optimal. For mode 1,

each vehicle can handle at most 3 assignments (as it requires three days to deliver any in

particular, and the latest deadline is day 10). From this we know that, at least, we would

need 5 vehicles, as we have 14 shipments. Shipment 7, our last shipment, has a deadline

on day 7, and so it is apparent it could not easily be transferred to vehicle 4 or 5 with the

shipment loads as they currently stand. While it is conceivable that a more efficient

solution exists, the solution generated by the algorithm is intuitively near-optimal, at least

for mode 1. On mode 2, we simply observe that both vehicles are identically full.

39

9. Multimodal Simple Case Shipment Output

Shipment Vehicle Start Time Mode Sink
2 1 1 1 3
2 1 4 1 3
8 1 7 1 4
3 2 1 1 4
3 2 4 1 4
8 2 8 1 4
3 3 2 1 4
4 3 5 1 4

11 3 9 1 4
9 4 2 1 3
9 4 5 1 3
9 5 3 1 3

11 5 6 1 4
7 6 3 1 4

10 1 1 2 3
6 1 3 2 3
6 1 5 2 3
6 1 7 2 3

12 1 9 2 4
1 2 1 2 3

12 2 3 2 4
12 2 5 2 4
5 2 7 2 3
5 2 9 2 3

 To compare to our earlier values, we have 6 vehicles of type 1, shipping 100 units

every 3 days, and 2 vehicles of type 2, shipping 100 units every 2 days, for a total of 300

units of shipping capacity. This compares favorably to our lower bound estimate of 240

tons as an absolute minimum, given the effects of infrastructure interference and the

uneven effect of making trips of duration 3 days during a space of 10 days.

40

Multimodal Large Scale Case

In order to test the algorithm’s capacity to perform at large scale, a new shipping

requirement list was created for the multimodal simple case. In this expansion of the

original problem, we extrapolated the original data set to one hundred shipments, and

extended the infrastructure capacity of the underlying network to handle 100,000 units

per node per day, in order to ensure feasibility.

Solution of the problem required approximately five seconds. The data that was

returned indicated that 212 vehicles were required to handle the shipping, all of the same

mode, which approximately conforms to expectations. Given that infrastructure and

deadline limitations were not concerns, all shipments should have been processed on the

first mode. This was indeed the case.

Determining whether the solution was ultimately feasible would require detailed

comparison of each shipment to each other shipment and to the overall infrastructure

capacity and vehicle usage charts, in order to confirm the validity of the original result,

but a superficial examination reveals start times which increase slowly as the

infrastructure begins to fill.

A second attempt was made to process the same set of shipments, using

infrastructure of only 100 per day. This resulted in massive over-flow, as predicted, over-

flowing the limited 2-dimensional array for unloading.

41

Appendix A: Shortest Path Network Generator

Sub simplifynetwork()

 Dim n As Integer

 Dim i As Integer

 Dim SourceNode As Integer

 Dim NetworkSheet As String

 Dim numnodes As Integer

 NetworkSheet = ActiveSheet.Name

 SourceNode = 1

 n = 1

 i = 1

 j = 1

 Sheets(NetworkSheet).Activate

 Range("A1").Select

 Do While ActiveCell.Offset(n, 0).Value <> 0

 n = n + 1

 Loop

 numnodes = n - 1

 Sheets.Add.Name = "Simplified " & NetworkSheet

 Sheets.Add.Name = "Simplified " & NetworkSheet & " Paths"

 Do While SourceNode <= numnodes

 DijkstrasAlgorithm SourceNode, numnodes, NetworkSheet

 SourceNode = SourceNode + 1

 Loop

 Sheets("Simplified " & NetworkSheet & " Paths").Activate

42

 ActiveCell.Value = "Nodes"

 Do While i <= numnodes

 ActiveCell.Offset(0, i) = Str(i)

 ActiveCell.Offset(i, 0) = Str(i)

 i = i + 1

 Loop

 Sheets("Simplified " & NetworkSheet).Activate

 ActiveCell.Value = "Nodes"

 Do While j <= numnodes

 ActiveCell.Offset(0, j) = Str(j)

 j = j + 1

 Loop

End Sub

43

Sub DijkstrasAlgorithm(SourceNode As Integer, numnodes As Integer, NetworkSheet As
String)

 Dim CurrentNode As Integer

 Dim CurrentDist As Double

 Dim AmDone As Boolean

 Dim ShortestDist() As Double

 Dim BigM As Double

 Dim n As Integer

 Dim i As Integer

 Dim j As Integer

 Dim CurrentLowDist As Double

 Dim CurrentLowNode As Integer

 Dim FoundUnexplored As Boolean

 Dim K As Integer

 Dim DistOnThisPath As Double

 Dim ShortestPath() As String

 Dim p As Integer

 AmDone = False

 CurrentNode = SourceNode

 CurrentDist = 0

 BigM = 1E+300

 n = 1

 ReDim ShortestDist(1 To numnodes)

 ReDim ShortestPath(1 To numnodes)

 Do While n <= numnodes

 ShortestDist(n) = BigM

44

 ShortestPath(n) = Str(SourceNode)

 n = n + 1

 Loop

 ShortestDist(SourceNode) = 0

 Do While AmDone = False

 i = 1

 Do While i <= numnodes

 DistOnThisPath = finddist(CurrentNode, i, NetworkSheet) +
ShortestDist(CurrentNode)

 If DistOnThisPath < ShortestDist(i) Then

 ShortestDist(i) = DistOnThisPath

 ShortestPath(i) = ShortestPath(CurrentNode) & Str(i)

 End If

 i = i + 1

 Loop

 j = 1

 CurrentLowDist = BigM

 FoundUnexplored = False

 Do While j <= numnodes

 If ShortestDist(j) > CurrentDist Then

 If ShortestDist(j) < CurrentLowDist Then

 CurrentLowDist = ShortestDist(j)

 CurrentLowNode = j

 FoundUnexplored = True

 End If

 ElseIf ShortestDist(j) = CurrentDist Then

 If CurrentNode < j Then

45

 CurrentLowDist = ShortestDist(j)

 CurrentLowNode = j

 FoundUnexplored = True

 End If

 End If

 j = j + 1

 Loop

 If FoundUnexplored = False Then

 AmDone = True

 ElseIf FoundUnexplored = True Then

 CurrentNode = CurrentLowNode

 CurrentDist = CurrentLowDist

 End If

 Loop

 Sheets("Simplified " & NetworkSheet).Activate

 ActiveSheet.Range("A1").Select

 K = 1

 Do While ActiveCell.Offset(K, 0).Value <> 0

 K = K + 1

 Loop

 ActiveCell.Offset(K, 0) = SourceNode

 l = 1

 Do While l < numnodes + 1

 ActiveCell.Offset(K, l) = ShortestDist(l)

 l = l + 1

 Loop

46

 Sheets("Simplified " & NetworkSheet & " Paths").Activate

 ActiveSheet.Range("A1").Select

 p = 1

 Do While p < numnodes + 1

 ActiveCell.Offset(K, p) = ShortestPath(p)

 p = p + 1

 Loop

End Sub

Function finddist(SourceNode As Integer, sinknode As Integer, NetworkSheet As String)

 Sheets(NetworkSheet).Activate

 ActiveSheet.Range("A1").Select

 finddist = CDbl(ActiveCell.Offset(SourceNode, sinknode).Value)

End Function

47

Appendix B: Ordered Scheduling Heuristic

Public NumNodes As Integer

Public NumModes As Integer

Public numshipments As Integer

Public SimpleNetwork() As Variant

Public minvehicles() As Integer

Public latedeadline As Integer

Public highestused As Integer

Public ShArrival() As Variant

Public ShDeadline() As Variant

Public vehiclespeeds() As Variant

Public shsize As Variant

Public shsink As Variant

Public shsource As Variant

Public vcapacity As Variant

Public shUnloadTime() As Double

Public shipmentarray() As Integer

Public shipmentarraynum As Integer

Public vunloadtime() As Double

Public index As Integer

Public shtraveltime() As Double

48

Sub HeuristicScheduler()

 Dim NumShipArray As Integer

 Dim DeadlineArray() As Integer

 Dim DeadlineTracker() As Integer

 Dim infraarray() As Integer

 Dim infratracker() As Integer

 Dim n As Integer

 Dim mode As Integer

 Popglobals

 PopulateSimpleNetwork

 index = 1

 ReDim shUnloadTime(1 To NumModes, 1 To numshipments)

 ReDim shipmentarray(1 To numshipments)

 shipmentarraynum = numshipments

 n = 1

 Do While n <= numshipments

 shipmentarray(n) = n

 n = n + 1

 Loop

 mode = NumModes

 Do While mode > 0

 DeadlineArrayGenerator shipmentarray(), shipmentarraynum, DeadlineArray(),
DeadlineTracker()

 InfraArrayGenerator DeadlineArray(), DeadlineTracker(), infraarray(), infratracker()

 ListVehicAssign infraarray(), infratracker(), mode

49

 eliminateshipments infraarray(), infratracker(), mode, shipmentarray(),
shipmentarraynum

 mode = mode - 1

 Loop

End Sub

50

Sub eliminateshipments(infraarray() As Integer, infratracker() As Integer, mode As
Integer, shipmentarray() As Integer, shipmentarraynum As Integer)

 Dim n As Integer

 Dim k As Integer

 Dim elim As Boolean

 elim = False

 n = 1

 k = 1

 Do While n <= infratracker(mode)

 Do While k <= shipmentarraynum And elim = False

 If infraarray(mode, n) = shipmentarray(k) Then

 elim = True

 shipmentarray(k) = shipmentarray(shipmentarraynum)

 shipmentarraynum = shipmentarraynum - 1

 End If

 k = k + 1

 Loop

 elim = False

 k = 1

 n = n + 1

 Loop

End Sub

51

Sub ListVehicAssign(infraarray() As Integer, infratracker() As Integer, mode As Integer)

 Dim n As Integer

 Dim VehicAssignArray() As Double

 Dim unloadarray() As Double

 Dim currmode As Integer

 ReDim VehicAssignArray(1 To minvehicles(mode), 1 To latedeadline)

 ReDim unloadarray(1 To NumNodes, 1 To latedeadline)

 highestused = 0

 n = 1

 Do While n <= infratracker(mode)

 ShipmentVehicAssign VehicAssignArray(), infraarray(mode, n), mode,
unloadarray(), highestused

 n = n + 1

 Loop

 minvehicles(mode) = highestused

 If mode > 1 Then

 listgapcheck VehicAssignArray(), infraarray(), infratracker(mode - 1), mode,
unloadarray()

 End If

End Sub

52

Sub listgapcheck(VehicAssignArray() As Double, ShipmentList() As Integer, infranum
As Integer, currmode As Integer, unloadarray() As Double)

 Dim n As Integer

 Dim found As Boolean

 Dim currvehicle As Integer

 n = 1

 Do While n <= infranum

 ShipmentGapCheck VehicAssignArray(), ShipmentList(), n, infranum, currmode,
unloadarray()

 n = n + 1

 Loop

End Sub

53

Sub ShipmentGapCheck(VehicAssignArray() As Double, ShipmentList() As Integer,
ShipmentNumber As Integer, infranum As Integer, mode As Integer, unloadarray() As
Double)

 Dim currvehicle As Integer

 Dim found As Boolean

 Dim currstart As Double

 Dim starttimes() As Double

 Dim foundvehicles As Integer

 Dim vehicles() As Integer

 Dim shipment As Integer

 Dim i As Integer

 Dim j As Integer

 Dim elim As Boolean

 Dim pseudounloadarray() As Double

 Dim l As Integer

 Dim k As Integer

 Dim traveltime As Double

 ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline)

 shipment = ShipmentList(mode - 1, ShipmentNumber)

 traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode)

 currvehicle = 1

 l = 1

 k = 1

 Do While l <= NumNodes

 Do While k <= latedeadline

 pseudounloadarray(l, k) = unloadarray(l, k)

54

 k = k + 1

 Loop

 k = 1

 l = l + 1

 Loop

 If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0
Then

 neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1

 Else

 neededvehicles = Int(shsize(shipment) / vcapacity(mode))

 End If

 ReDim vehicles(1 To neededvehicles)

 ReDim starttimes(1 To neededvehicles)

 Do While currvehicle <= minvehicles(mode) And foundvehicles < neededvehicles

 If foundvehicles > 0 Then

 If vehicles(foundvehicles) = currvehicle Then

 currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) +
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode)

 Else

 currstart = 0

 End If

 Else

 currstart = 0

 End If

 found = True

 corrected = True

 Do While found = True And corrected = True

55

 found = findstarttime(VehicAssignArray(), mode, starttimes(foundvehicles + 1),
currvehicle, currstart, shipment)

 corrected = correctstarttime(pseudounloadarray(), mode, starttimes(foundvehicles
+ 1), currvehicle, found, shipment, currstart)

 Loop

 If found = True Then

 foundvehicles = foundvehicles + 1

 allocate starttimes(foundvehicles) + traveltime, pseudounloadarray(),
shsink(shipment), vunloadtime(mode, shsink(shipment))

 vehicles(foundvehicles) = currvehicle

 n = n + 1

 Else

 currvehicle = currvehicle + 1

 corrected = True

 found = True

 End If

 Loop

 i = 1

 If foundvehicles >= neededvehicles Then

 Do While i <= neededvehicles

 allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(),
unloadarray(), mode

 i = i + 1

 Loop

 j = 1

 Do While j <= infranum And elim = False

 If shipmentarray(j) = shipment Then

 shipmentarray(j) = shipmentarray(shipmentarraynum)

56

 shipmentarraynum = shipmentarraynum - 1

 elim = True

 End If

 j = j + 1

 Loop

 End If

End Sub

57

Sub ShipmentVehicAssign(VehicAssignArray() As Double, shipment As Integer, mode
As Integer, unloadarray() As Double, highestused As Integer)

 Dim neededvehicles As Integer

 Dim n As Integer

 Dim i As Integer

 Dim starttimes() As Double

 Dim found As Boolean

 Dim corrected As Boolean

 Dim currstart As Double

 Dim vehicles() As Integer

 Dim currvehicle As Integer

 Dim pseudounloadarray() As Double

 Dim j As Integer

 Dim k As Integer

 Dim temphighestused As Integer

 Dim traveltime As Double

 ReDim pseudounloadarray(1 To NumNodes, 1 To latedeadline)

 traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode)

 j = 1

 k = 1

 Do While j <= NumNodes

 Do While k <= latedeadline

 pseudounloadarray(j, k) = unloadarray(j, k)

 k = k + 1

 Loop

58

 k = 1

 j = j + 1

 Loop

 If shsize(shipment) / vcapacity(mode) - Int(shsize(shipment) / vcapacity(mode)) > 0
Then

 neededvehicles = Int(shsize(shipment) / vcapacity(mode)) + 1

 Else

 neededvehicles = Int(shsize(shipment) / vcapacity(mode))

 End If

 ReDim starttimes(1 To neededvehicles)

 ReDim vehicles(1 To neededvehicles)

 n = 1

 currvehicle = 1

 temphighestused = highestused

 Do While n <= neededvehicles

 corrected = True

 found = True

 If foundvehicles > 0 Then

 If vehicles(foundvehicles) = currvehicle Then

 currstart = starttimes(foundvehicles) + vunloadtime(mode, shsink(shipment)) +
2 * SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) / vehiclespeeds(mode)

 Else

 currstart = 0

 End If

 Else

 currstart = 0

 End If

59

 Do While corrected = True And found = True

 found = findstarttime(VehicAssignArray(), mode, starttimes(n), currvehicle,
currstart, shipment)

 corrected = correctstarttime(pseudounloadarray(), mode, starttimes(n),
currvehicle, found, shipment, currstart)

 Loop

 If found = True Or currvehicle > temphighestused Then

 vehicles(n) = currvehicle

 foundvehicles = foundvehicles + 1

 allocate starttimes(n) + traveltime, pseudounloadarray(), shsink(shipment),
vunloadtime(mode, shsink(shipment))

 If vehicles(foundvehicles) > temphighestused Then

 temphighestused = vehicles(foundvehicles)

 End If

 n = n + 1

 Else

 currvehicle = currvehicle + 1

 currstart = 0

 corrected = True

 found = True

 End If

 Loop

 i = 1

 Do While i <= neededvehicles

 If shipment = 3 Then

 shipment = shipment

 End If

60

 allocshipvehic starttimes(i), vehicles(i), shipment, VehicAssignArray(),
unloadarray(), mode

 i = i + 1

 Loop

 If vehicles(neededvehicles) > highestused Then

 highestused = vehicles(neededvehicles)

 End If

End Sub

61

Sub allocshipvehic(starttime As Double, vehicle As Integer, shipment As Integer,
VehicAssignArray() As Double, unloadarray() As Double, mode As Integer)

 Dim reqvehictime As Double

 Dim requnloadtime As Double

 Dim allocvehictime As Double

 Dim allocunloadtime As Double

 Dim currtime As Double

 Dim timetransfervariable As Double

 Dim currday As Integer

 Sheets("Output").Range("A1").Offset(index, 0) = shipment

 Sheets("Output").Range("A1").Offset(index, 1) = vehicle

 Sheets("Output").Range("A1").Offset(index, 2) = starttime

 Sheets("Output").Range("A1").Offset(index, 3) = mode

 Sheets("Output").Range("A1").Offset(index, 4) = shsink(shipment)

 index = index + 1

 reqvehictime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment))

 requnloadtime = vunloadtime(mode, shsink(shipment))

 currday = Int(starttime)

 allocvehictime = 0

 Do While allocvehictime < reqvehictime

 timetransfervariable = 1

 If timetransfervariable > (1 - starttime + currday) Then

 timetransfervariable = 1 - starttime + currday

 End If

 If timetransfervariable > 1 - VehicAssignArray(vehicle, currday) Then

62

 timetransfervariable = 1 - VehicAssignArray(vehicle, currday)

 End If

 If timetransfervariable > reqvehictime - allocvehictime Then

 timetransfervariable = reqvehictime - allocvehictime

 End If

 VehicAssignArray(vehicle, currday) = VehicAssignArray(vehicle, currday) +
timetransfervariable

 allocvehictime = allocvehictime + timetransfervariable

 currday = currday + 1

 Loop

 currday = Int(starttime + SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode))

 Do While allocunloadtime < requnloadtime

 timetransfervariable = requnloadtime - allocunloadtime

 If timetransfervariable > (1 - starttime - SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode) + currday) Then

 timetransfervariable = (1 - starttime - SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode) + currday)

 End If

 If timetransfervariable > 1 - unloadarray(shsink(shipment), currday) Then

 timetransfervariable = 1 - unloadarray(shsink(shipment), currday)

 End If

 unloadarray(shsink(shipment), currday) = unloadarray(shsink(shipment), currday) +
timetransfervariable

 allocunloadtime = allocunloadtime + timetransfervariable

 currday = currday + 1

 Loop

End Sub

63

Function correctstarttime(infraassignarray() As Double, mode As Integer, starttime As
Double, currvehicle As Integer, found As Boolean, shipment As Integer, currstart As
Double)

 Dim currunloadtime As Double

 Dim currday As Integer

 Dim traveltime As Double

 Dim availtime As Double

 Dim curravailtime As Double

 traveltime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode)

 currunloadtime = starttime + traveltime

 currday = Int(currunloadtime)

 Do While availtime < vunloadtime(mode, shsink(shipment)) And currday <
latedeadline

 curravailtime = 1

 If 1 - infraassignarray(shsink(shipment), currday) < curravailtime Then

 curravailtime = 1 - infraassignarray(shsink(shipment), currday)

 End If

 If 1 - (currunloadtime - currday) < curravailtime Then

 curravailtime = 1 - (currunloadtime - currday)

 End If

 availtime = availtime + curravailtime

 If infraassignarray(shsink(shipment), currday) > 0 And availtime <
vunloadtime(mode, shsink(shipment)) Then

 currunloadtime = currday + infraassignarray(shsink(shipment), currday)

 currday = currday + 1

 availtime = currday - currunloadtime

 End If

64

 Loop

 If currunloadtime = starttime + traveltime Then

 correctstarttime = False

 Else

 correctstarttime = True

 currstart = currunloadtime - traveltime

 End If

 If availtime >= vunloadtime(mode, shsink(shipment)) And currunloadtime +
vunloadtime(mode, shsink(shipment)) <= ShDeadline(shipment) + 1 Then

 found = True

 Else

 found = False

 End If

End Function

65

Function findstarttime(VehicAssignArray() As Double, mode As Integer, starttime As
Double, currvehicle As Integer, currstart As Double, shipment As Integer)

 Dim currtime As Double

 Dim currday As Integer

 Dim reqtime As Double

 Dim availtime As Double

 Dim curravailtime As Double

 If ShArrival(shipment) > currstart Then

 currtime = ShArrival(shipment)

 Else

 currtime = currstart

 End If

 currday = Int(currtime)

 reqtime = SimpleNetwork(mode)(shsource(shipment), shsink(shipment)) /
vehiclespeeds(mode) * 2 + vunloadtime(mode, shsink(shipment))

 Do While availtime < reqtime And currday < latedeadline

 curravailtime = 1

 If 1 - VehicAssignArray(currvehicle, currday) < curravailtime Then

 curravailtime = 1 - VehicAssignArray(currvehicle, currday)

 End If

 If 1 - (currtime - currday) < curravailtime Then

 curravailtime = 1 - (currtime - currday)

 End If

 availtime = availtime + curravailtime

 If VehicAssignArray(currvehicle, currday) > 0 And availtime < reqtime Then

 availtime = 1 - VehicAssignArray(currvehicle, currday)

66

 currtime = currday + VehicAssignArray(currvehicle, currday)

 End If

 currday = currday + 1

 Loop

 starttime = currtime

 If availtime >= reqtime And starttime + SimpleNetwork(mode)(shsource(shipment),
shsink(shipment)) / vehiclespeeds(mode) + vunloadtime(mode, shsink(shipment)) <
ShDeadline(shipment) + 1 Then

 findstarttime = True

 Else

 findstarttime = False

 End If

End Function

67

Sub InfraArrayGenerator(DeadlineArray() As Integer, DeadlineTracker() As Integer,
infraarray() As Integer, infratracker() As Integer)

 Dim n As Integer

 ReDim infraarray(1 To NumModes, 1 To numshipments)

 ReDim infratracker(1 To NumModes)

 n = 1

 Do While n <= NumModes

 InfraAssignStep DeadlineArray(), DeadlineTracker(), infraarray(), infratracker(), n

 n = n + 1

 Loop

End Sub

68

Sub InfraAssignStep(DeadlineArray() As Integer, DeadlineTracker() As Integer,
infraarray() As Integer, infratracker() As Integer, currmode As Integer)

 Dim infraassignarray() As Double

 Dim n As Integer

 Dim currarrival As Integer

 Dim i As Integer

 Dim shipment As Integer

 ReDim shtraveltime(1 To numshipments)

 ShDeadline =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2",
Sheets("Shipments").Range("F2").End(xlDown)))

 ShArrival =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2",
Sheets("Shipments").Range("E2").End(xlDown)))

 shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2",
Sheets("Shipments").Range("C2").End(xlDown)))

 populatetraveltime currmode, shtraveltime(), shsink

 n = 1

 latedeadline = 0

 Do While n <= numshipments

 If ShDeadline(n) > latedeadline Then

 latedeadline = ShDeadline(n)

 End If

 If ShArrival(n) > latearrival Then

 latearrival = ShArrival(n)

 End If

 n = n + 1

 Loop

69

 latedeadline = latedeadline * 2

 ReDim infraassignarray(1 To NumNodes, 1 To latedeadline)

 i = 1

 currarrival = 1

 Do While currarrival <= latearrival

 Do While i <= DeadlineTracker(currmode)

 shipment = DeadlineArray(currmode, i)

 If currarrival = ShArrival(shipment) Then

 found = findspace(shipment, infraassignarray(), shtraveltime(shipment) +
ShArrival(shipment), ShDeadline(shipment), shsink(shipment),
shUnloadTime(currmode, shipment))

 If found = True Or currmode = NumModes Then

 allocate ShArrival(shipment) + shtraveltime(shipment), infraassignarray(),
shsink(shipment), shUnloadTime(currmode, shipment)

 infratracker(currmode) = infratracker(currmode) + 1

 infraarray(currmode, infratracker(currmode)) = DeadlineArray(currmode, i)

 found = False

 Else

 DeadlineTracker(currmode + 1) = DeadlineTracker(currmode + 1) + 1

 DeadlineArray(currmode + 1, DeadlineTracker(currmode + 1)) =
DeadlineArray(currmode, i)

 End If

 End If

 i = i + 1

 Loop

 i = 1

 currarrival = currarrival + 1

70

 Loop

End Sub

71

Sub populatetraveltime(mode As Integer, traveltime() As Double, sink As Variant)

 Dim n As Integer

 vehiclespeeds =
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2",
Sheets("Vehicles").Range("B2").End(xlDown)))

 shsource =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2",
Sheets("Shipments").Range("B2").End(xlDown)))

 n = 1

 Do While n <= numshipments

 traveltime(n) = SimpleNetwork(mode)(shsource(n), sink(n)) / vehiclespeeds(mode)

 n = n + 1

 Loop

 n = 1

End Sub

72

Sub populateneededtime(mode As Integer, sink As Variant)

 Dim n As Integer

 Dim infraarray() As Variant

 Dim transfervariable As Variant

 Dim j As Integer

 Dim k As Integer

 ReDim infraarray(1 To NumModes)

 ReDim vunloadtime(1 To NumModes, 1 To NumNodes)

 shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2",
Sheets("Shipments").Range("D2").End(xlDown)))

 j = 1

 Do While j <= NumModes

 With Sheets("Network " & j & " Infra").Range("B2")

 transfervariable = Application.WorksheetFunction.Transpose(Range(.Offset(0, 0),
.End(xlDown)))

 End With

 infraarray(j) = transfervariable

 k = 1

 Do While k <= NumNodes

 vunloadtime(j, k) = vcapacity(mode) / infraarray(j)(k)

 k = k + 1

 Loop

 j = j + 1

 Loop

 n = 1

 Do While n <= numshipments

73

 shUnloadTime(mode, n) = shsize(n) / infraarray(mode)(sink(n))

 n = n + 1

 Loop

End Sub

74

Function findspace(shipment As Integer, infraassignarray() As Double, startpoint As
Double, deadline As Variant, sink As Variant, neededtime As Double)

 Dim foundtime As Double

 Dim currday As Integer

 currday = Int(startpoint)

 Do While foundtime < neededtime And currday <= deadline

 foundtime = 1 - infraassignarray(sink, currday) + foundtime

 If 1 - (startpoint - currday) < foundtime Then

 foundtime = 1 - (startpoint - currday)

 End If

 currday = currday + 1

 Loop

 If foundtime >= neededtime Then

 findspace = True

 Else

 findspace = False

 End If

End Function

75

Sub allocate(startpoint As Double, infraassignarray() As Double, sink As Variant,
neededtime As Double)

 Dim remainingtime As Double

 Dim currday As Integer

 Dim transfertime As Double

 currday = Int(startpoint)

 remainingtime = neededtime

 Do While remainingtime > 0

 transfertime = remainingtime

 If transfertime > 1 - infraassignarray(sink, currday) Then

 transfertime = 1 - infraassignarray(sink, currday)

 End If

 If transfertime > currday + 1 - startpoint Then

 transfertime = currday + 1 - startpoint

 End If

 infraassignarray(sink, currday) = infraassignarray(sink, currday) + transfertime

 remainingtime = remainingtime - transfertime

 currday = currday + 1

 Loop

End Sub

76

Sub Popglobals()

 Dim vehicleestimate As Integer

 Dim i As Integer

 Dim mode As Integer

 numshipments = Sheets("Shipments").Range("A1",
Sheets("Shipments").Range("A1").End(xlDown)).Rows.Count - 1

 NumModes = Sheets("Vehicles").Range("A1",
Sheets("Vehicles").Range("A1").End(xlDown)).Rows.Count - 1

 NumNodes = Sheets("Simplified Network 1").Range("A1", Sheets("Simplified
Network 1").Range("A1").End(xlDown)).Rows.Count - 1

 shsize = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("D2",
Sheets("Shipments").Range("D2").End(xlDown)))

 vcapacity =
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("C2",
Sheets("Vehicles").Range("C2").End(xlDown)))

 vehicleestimate = 0

 i = 1

 mode = 1

 ReDim minvehicles(1 To NumModes)

 Do While mode <= NumModes

 Do While i <= numshipments

 If shsize(i) / vcapacity(mode) > 1 Then

 vehicleestimate = vehicleestimate + shsize(i) / vcapacity(mode)

 Else

 vehicleestimate = vehicleestimate + 1

 End If

 i = i + 1

 Loop

77

 i = 1

 minvehicles(mode) = Int(vehicleestimate * 2)

 mode = mode + 1

 vehicleestimate = 0

 Loop

End Sub

78

Sub DeadlineArrayGenerator(shipmentarray() As Integer, NumShipArray As Integer,
DeadlineArray() As Integer, DeadlineTracker() As Integer)

 Dim n As Integer

 Dim mode As Integer

 Dim FeasArray() As Integer

 ReDim DeadlineArray(1 To NumModes, 1 To NumShipArray)

 ReDim DeadlineTracker(1 To NumModes)

 ReDim FeasArray(1 To numshipments)

 n = 1

 DetFeas FeasArray()

 Do While n <= NumShipArray

 mode = FeasArray(shipmentarray(n))

 DeadlineTracker(mode) = DeadlineTracker(mode) + 1

 DeadlineArray(mode, DeadlineTracker(mode)) = shipmentarray(n)

 n = n + 1

 Loop

End Sub

79

Sub DetFeas(FeasArray() As Integer)

 Dim shsource As Variant

 Dim shsink As Variant

 Dim ShArrival As Variant

 Dim ShDeadline As Variant

 Dim vehiclespeeds As Variant

 Dim found As Boolean

 Dim n As Integer

 Dim k As Integer

 Dim i As Integer

 ReDim FeasArray(1 To numshipments)

 shsource =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("B2",
Sheets("Shipments").Range("B2").End(xlDown)))

 shsink = Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("C2",
Sheets("Shipments").Range("C2").End(xlDown)))

 ShArrival =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("E2",
Sheets("Shipments").Range("E2").End(xlDown)))

 ShDeadline =
Application.WorksheetFunction.Transpose(Sheets("Shipments").Range("F2",
Sheets("Shipments").Range("F2").End(xlDown)))

 vehiclespeeds =
Application.WorksheetFunction.Transpose(Sheets("Vehicles").Range("B2",
Sheets("Vehicles").Range("B2").End(xlDown)))

 i = 1

 Do While i <= NumModes

 populateneededtime i, shsink

 i = i + 1

80

 Loop

 n = 1

 k = 1

 Do While n <= numshipments

 Do While k < NumModes And found = False

 If SimpleNetwork(k)(shsource(n), shsink(n)) / vehiclespeeds(k) +
shUnloadTime(k, n) <= ShDeadline(n) - ShArrival(n) + 1 Then

 found = True

 FeasArray(n) = k

 End If

 k = k + 1

 Loop

 If found = False Then

 FeasArray(n) = k

 End If

 found = False

 k = 1

 n = n + 1

 Loop

End Sub

81

Sub PopulateSimpleNetwork() 'This converts the simple networks generated by Dijkstras
algorithm into arrays, for speed.

 Dim i As Integer

 Dim transfervariable() As Variant

 ReDim SimpleNetwork(1 To NumModes)

 i = 1

 Do While i <= NumModes

 With Sheets("Simplified Network " & i).Range("B2")

 transfervariable = Range(.Offset(0, 0), .End(xlDown).End(xlToRight))

 End With

 SimpleNetwork(i) = transfervariable()

 i = i + 1

 Loop

End Sub

82

Bibliography

Dantzig, G. B., and J. H. Ramser. (1959). "The Truck Dispatching Problem."
Management Science 6.1: 80-91. Print.

Lu, Quan, and Maged Dessouky. (2004). "An Exact Algorithm for the Multiple
Vehicle Pickup and Delivery Problem." Transportation Science 38.4: 503-14.
Print.

Moccia, Luigi, Jean-Francois Cordeau, Gilbert Laporte, Stefan Ropke, and Maria
Valentini. Modeling and Solving a Multimodal Routing Problem With
Timetables and Time Windows. Tech. Dipartimento Di Elettronica,
Informatica e Sistemistica, Università Della Calabria, n.d. Web. 20 Nov.
2012. <http://www.diku.dk/~sropke/>.

Psaraftis, H. N. (1983). "An Exact Algorithm for the Single Vehicle Many-to-Many
Dial-A-Ride Problem with Time Windows." Transportation Science 17.3:
351-57. Print.

Psaraftis, Harilaos. (1980). "A Dynamic Programming Approach to the Single-
Vehicle, Many-to-Many Immediate Request Dial-a-Ride Problem."
Transportation Science 14: 130-54. Print.

Savelsbergh, M. W. P., and M. Sol. (1995). "The General Pickup and Delivery
Problem." Transportation Science 29.1: 17-29. Print.

Sexton, T. R., and L. D. Bodin. (1985). "Optimizing Single Vehicle Many-to-Many
Operations with Desired Delivery Times: I. Scheduling." Transportation
Science 19.4: 378-435. Print.

Verma, Sushil, and Maged Dessouky. (1999). "Multistage Hybrid Flowshop
Scheduling with Identical Jobs and Uniform Parallel Machines." Journal of
Scheduling 2.3: 135-50. Print.

Wagner, Harvey M. (1959). "An Integer Linear-programming Model for Machine
Scheduling." Naval Research Logistics Quarterly 6.2: 131-40. Print.

83

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD–MM–YYYY)
21-03-2013

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From — To)
Sep 2011-Feb 2013

4. TITLE AND SUBTITLE
Vehicle Minimization for the Multimodal Pickup and Delivery Problem with

Time Windows

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Clapp, Benjamin A.

5d. PROJECT NUMBER
13S141
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER
AFIT-ENS-13-M-03

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Amy Pappas, CIV
USTRANSCOM/TCAC
508 Scott Drive
Scott AFB IL 62225-5357
amy.a.pappas.civ@mail.mil
618-220-7758 / DSN 770-7758

10. SPONSOR/MONITOR’S ACRONYM(S)
TCAC
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.
14. ABSTRACT

The algorithm proposed here is used for heuristic solutions for the Multimodal Multiple Vehicle Routing Problem
with Unloading Capacity, Pickup and Dropoff, and Time Windows, solved so as to minimize the number of vehicles used,
subject to varying objective function values for each vehicle. The MVRP is simplified and split into a routing problem and a
scheduling problem. The routing problem is addressed by Dijkstra’s Algorithm. This generates a new network for the second
stage of the algorithm. It is assumed that the shortest path is the correct path to use, and shipments each travel unimodally.
The scheduling problem is addressed by treating the various paths as though they were machines, with vehicle number being
treated approximately as capacity for the machines, and unloading capacity being treated as a second stage in the processing.
The problem is analyzed by assigning all shipments which can be assigned elsewhere away from the most expensive mode
and then assigning only leftover shipments to the most expensive mode. Multiple resolutions of the scheduling problem result
in feasible solutions for less expensive modes, which results in a feasible solution for every mode, and a low cost solution in
terms of vehicles used.

15. SUBJECT TERMS
Transportation Routing Heuristic VRP FSMP
16. SECURITY CLASSIFICATION OF: 17.

LIMITATION
OF
ABSTRACT

UU

18. NUMBER OF
PAGES

93

19a. NAME OF RESPONSIBLE PERSON
Dr. Jeffery Weir ENS

a. REPORT

U

b. ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)
(937)255-3636, ext 4523

	Abstract
	Acknowledgements
	I. Introduction
	The General Problem
	Algorithm Overview
	Scope of Research
	Issues, Needs, and Limitations

	II. Literature Review
	Chapter Overview
	Vehicle Routing Problem Overview
	Dial-A-Ride Problem Summary
	Dial-A-Ride Problem Solution Techniques
	Dial-A-Ride Discussion Summary
	Q-Machine Scheduling Summary
	Q-Machine Scheduling Heuristics
	Q-Machine Scheduling Summary
	Pragmatic Instance Summary
	Chapter Review

	III. Methodology
	Broad Analysis of the Algorithm
	Data Inputs
	Dijkstra’s Algorithm
	Scheduling Heuristic Overview
	Scheduling Heuristic Inputs
	Deadline Assignment
	Infrastructure Assignment
	Vehicle Assignment
	Correction Step

	IV. Results and Analysis
	Simple Test Case
	Modified Simple Case
	Multinodal, Multimodal Demonstration Case
	Multimodal Large Scale Case

	Appendix A: Shortest Path Network Generator
	Appendix B: Ordered Scheduling Heuristic
	Bibliography

